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Abstract: This project aims at producing two levels of predictions for the Australian macadamia industry.
The first is overall longer-term forecasts, based on tree census data of growers in the Australian Macadamia
Society (AMS). This data set currently covers about 70% of total production, and is supplemented by our
best estimates of non-AMS new plantings. Given these tree numbers, average yields per tree are needed to
complete the forecasts. Yields from regional variety trials were initially used, but were found to be
consistently higher than average growers’ yield data. Hence, a statistical model was developed using
historical growers’ yields, taken from the AMS database. This mode! allowed for the effects of tree age,
variety, year, region, and tree spacing, and explained 67% of the total variation in the data. The second
component of this forecasting project is an annual fine-taning of these overail estimates, which accounts for
the effects of the previous year's climate on production. This fipe-tuning is based on historical yields,
measured as the percentage difference between expected and actual production. The dominant climatic
variables are observed temperature, rainfall and solar radiation. Water stress and waterlogging events were
estimated by running a soil water-balance model, but these terms were shown to have only a minor effect. All
models showed good agresment within the historical data - the jacklknife cross-validation R* vajues ranged
up to 97%. However, projections of the 2001 crop varied widely between models. The reasons for this are
currently unclear, and exploratory multivariate analyses shed few insights.

Keywords: Crop forecast; Macadamia; Statistical model; Climate

1. INTRODUCTION variability, With most orchards having reasonably

good management and degree of pest control, this
Production of macadamia nuts in Australia has variability is generally attributed to climatic factors
been steadily increasing as new areas are planted in the year prior to harvest. In order to facilitate
and existing trees age, from around 4,400 tonnes future  marketing  and  export demands, the
in 1987 to 34,500 tonnes in 1999. However, the macademia industry needs the ability to anticipate
crop for last year (2000} was only 29,100 tonnes, and manage both future production increases and
indicating the high degree of year-to-year this inherent seasonal variability.
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Two approaches have been adopted in this
project. Firstly, the longer-term ‘expected’ yields
are estimated from existing tree pumbers and
estimated yields. With this tree-crop having a
considerable delay from planting to significant
levels of production, reascnably  accurate
predictions out to about five vears are possible
[Scott, 1992]. The second research approach is to
take these estimates and ‘fine-tune’ them, by
considering the effect of the previous year's key
clmatic factors.

2. OVERALL MODEL

Very fortunately, the Australian Macadamia
Society regularly conducts a census of its
members. This has resulted in 2 database
containing tree numbers by age, variety, planting
density and focation. The current production from
these recorded trees is around 70% of the total
crop, so ‘scaling up’ future projections should nat
introduce major errors, The only exception here is
if new plantings (by newer investors in this
industry, and not yet AMS members) are
disproportionately represented. This appears io be
the case in some regions, particularly around
Bundaberg. Hence, we are incorporating best
estimates of these numbers of young trees, from
industry and government personnel.

Given these tree numbers, future production is
then dependent on their patterns of vield increase
as trees age. We initially tried using regional
variety trials to estimate these relationships, but
these data were considered Inappropriate, as
comparisons showed them to be markedly higher
than yields observed on growers’ properties.
Fortunately, the tree census of the AMS also
Included historical yields (1996 to 2000), for each
block of trees. To use in the regression analysis,
these data were scratinised for blocks with
predominantly the same age, variety type, and
planting density, resulting in 812 data points.

Plotted against age, these data displayed quite a
deal of scatter [Mayer and Stephenson, 20007, but
much of this was attributable to known effects. A
{3-parameter multiplicative bent-stick model
explained 67% of the variation, and produced
interpretable fitted constants. Taking the best
production region (northern NSW) as the
standard, ‘good’ regions (other NSW sites,
Glasshouse, Gympie, Bundaberg) averaged 90%
of the standard yield, for any given age, variety
and density. The other production regions
(Atherton  Tablelands, topical Qld, other
southeast Qld, WA) averaging 75%. Similarly,
against the top commercial varieties, those

nominated as ‘medium varieties’ averaged 94%,
and the ‘poor varieties’ only 70%.

Crthogonal to these contrasts was the interaction
between tree age and planting density, as illustrated
in Figure 1. This shows a logical pattern — for these
well-managed orchards, production begins at about
the fifth year, and increases linearly until tree
crowding oceurs {when adjacent trees start touching
and growing into each other). Naturally, this
happens earlier with the higher-density plantings.
There is a range of pruning and canopy
management options availabie after this, but the
individual trees have “filled’ the available area and
enly increase their vields by small amounts.
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Figure 1. Average yield pattems (kg/tree), for
commercial varieties in northern NSW.
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Figure 2. Average yield pattems (t/ha), for
cotamercial varieties in northern NSW,
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Of obvicus interest is the integration of the yield
patterns in Figure 1 with the planting densities {o
estimate yield per hectare, as illustrated in Figure
2. Here, the areas under sach curve represent the
cumnlative yields over time, but are particular to
these varieties in this region. Of course, a full
sconomic analysis {incorporating the costs of
purchasing, planting, and maintaining these trees
over time, along with loan payments and other
sundries} would be reguired to estimate optimal
density, which would vary with differing
assumptions,

In summary, the long-term predictions are simply
an integration of existing tree numbers and
expected future yield patierns, scaled upwards to
account for non-census plantings. The predicted
macadamiz crop for 2001 is 36,000 tonnes.

3. ANNUAL FINE-TUNING

The hypothesis adopted here is that historical
deviations about expected annuwal production,
standardised to a percentage deviance [Mayer and
Stephenson, 2000], are primarily a result of
climatic effects. We can thus screen for
correlations with measured climatic variables,
using general linear models. This approach has
previcusly been adopted for data from Hawaii
[Liang et al., 1983] and Ausiralia [Stephenson et
al., 1986]. In these studies, temperature, rainfail
and stress-days (measured via an  evapo-
transpiration index) proved important. Water-
logging and water stress events have also been
implicated in yield losses. As we have no actual
data on the distribution of these events over past
years, they were estimated for macadamia areas
from a verified seil-water model, using best-tuned
soil and plant parameters, actual climate records,
and a 100-year ‘burn-in’ period fo negate any
effect of the initial soil water profiles.

For these analyses of the annual percentage
deviance, the independent (X) variables screened
inchuded —

Bienniality term. Initial time-series analyses
indicated the presence of a reasonable (r = -0.52}
lag-1 autocorrelation in the medel, with ne
evidence {r = -0.01) of an additional two-year
effect. To allow for this possible biennial bearing
pattern, the percentage difference of the previous
vear’s crop was included. To ensure all models
could be directly compared, the first observation
(the 1987 crop) was excluded from all models.

Climatic and soil moisture terms. These were
considered on a ‘physiological year’ basis, which

for each year’s crop is compared against data from

1™ April in the previous year to the end of March in

the year of that crop. Meteorological and soil water

variables were taken at four locations representative

of the major production areas, and then overall

welghted averages used {weighted according fo

historical AMS production figures for these areas,

being northern NSW 6%, Bundaberg 17%,

Glasshouse 9% and Gympie 8%). The monthly

values screened, along with seasonal and anuual

averages or sums, were -

®  (emperature {minimuem, maximum and
average)

e rainfall, In(x+1) ransformed

= evaporation

e  solar radiation

@ ol water index

s number of water-stress days per month
[defined as days with less than 13% plant-
available-water-capacity  (PAWC},  which
equals field capacity minns wilting point]

s number of waterlogged days per month {days
when PAWC > 95%)

Climatic indices. Field-crop modellers use a range
of climatic indicators, as this has the benefit of
increasing lead-time. We took these on an ‘actual-
vear’ basis, ie, the indices for a calendar year were
correlated against the following year's crop. The
indices used included the monthly average Southern
Oscillation Index (SOI) values, and the SO{ phase
{five discrete levels, as used by the Agricultural
Production Systems Research Unit, Queensland
Centre for Climate Applications). To investigale
possible longer-term eflects, a lag of one year (ie,
data from the previous year) was also included.

Two types of models were developed — one using
actual climate data, and the other with the climatic
indices. As with many climatic data sets, the
{(assumedly  independent}  X-variables  were
moderately to  highly corelated, introducing
ambiguity into the interpretation (ie, there is no
single best model). Forward stepwise regression
using critical graphica! evaluation was conducted.
Here, the residuals at each stage were plotted
against the best contender X-variates, with the next
being chosen by consideration of the overall
pattern, rather than the contribution of only one or
two influential or high-leverage pomnts, This was
done to guard against over-fitting, and to aid cross-
valdation. In circumstances where adjacent months
or seasons contributed similarly (as measured by
the firted coefficients), these were pooled into
further composite X-variables and added to the
models as a single degree of {freedom term. [n some
madels, the significani faclors were screened for
conlrasts {usually binary), based on graphical
patterns. With only 13 observations and hence 12
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{adjusted) total degrees of freedom, a desired
minimum of 6 residual degrees of freedom was
targeted to guard against over-parameterisation.
In the final modelling stages, the best X-variables
were tested in all-subsets regressions.

Qur initial models (both with four regression, and
hence eight residual, degrees of freedom) were —

(Climate data) -
Diff% = 388 - 1.05 LaglDiff% + 7.84 Tavd —
29.0 TavBtol1 — 1.91 Wstress2; R = 83%,

where Diff% is anoual difference from expected,
LaglDiff% is from the preceding year,
Tav is average temperature,
Wisiress is the number of water-stress days,
and the appended numbers represent month,

{Climatic indices) -

Diff% = -10.6 + 22.1 (if 30Iph7 is 2} + 17.7 (if
SOIphéprev is 3) + 5.7 (if SOlphl lprev is 1}
— 6.3 (if SOIph10prev is 5); R* = 98%,

where 30Iph is SO phase, the number represents
the month, and ‘prev’ indicates the previous
year.

These and other trialed models fitted surprisingly
well. To check these relationships, we conducted
jackknife cross-validations. Here, in turn each
observation is ieft out and the model fitted to the
remaining 12 years’ data, and that model is then
used to predict the observation that was heid back.
This jackknife cross-validation R® is thus
expected to reflect the degree of fit for funue
predictions of unknown observations. Figure 3
shows the degree of fit across years from these
cross-validations, for the best climate index and
actual data rmodels. The cross-validation R” values
were 97 and 96% respectively. Note in particular
here the agreement of the exireme 1990
percentage difference — the models’ predictions
(which both turned out to be very good} were
effectively extrzpolations, well beyond their
underlying data, Figure 4 then shows how these
translate to the prediction of actal production,

Despite this good agreement with the historical
data, these two models gave very different
predictions for this year (2001), namely —10.6%
(32,200 tonnes) and +7.0% (38,500 tonnes)
respectively. This discrepancy was also noted in
other trialed models, and led to a wider screening
of possible models, as summarised in Table L
The wide range of predicted values here is
obviously of concern. It has been suggested that
this may be due io the ‘climate package’ of the
year April 2000 to March 2001 being unlike

anything observed in our historical data {which was
Hmited to 1986 onwards).
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Figure 3. Cross-validation predictions of percent
differences over time {line), for climatic indices
mode] (squares), and climate data model (circles).
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Figure 4. Cross-validation predictions of annual
crop (ln-scale) over time, for climatic indices model
{(squares}, and climate data model (circles).

Faced with these discrepancies, and as a check on
some of our assumptions, we conducted a poll of 32
macadamia growers and consuftanis. This sample
was spread geographically across growing areas in
Australia. In mid-Janvary and mid-March {(just pre-
harvest), they were asked fo estimate the average
percentage change from last year. Individual
responses  varied considerably, from 508 10
+40%, with regional averages between —14% and
+20%. Applied {by regions) o the tree census data,
these percentages can be used to form a fotal crop
prediction, which came out at 33,400 tonnes.
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4. MULTIVARIATE ANALYSES OF
CLIMATE PATTERNS

As an investigation of the clustering of the types
of years using all climatic data, both multi-
dimensional scaling (with Euclidean distances and
in two dimensions) and principal components
analysis were conducted. Neither was overly
successful at reducing the 153 climate variables
down into only two dimensions, The multi-
dimensional scaling gave a residual stress of .39
{considerably above the target of 0.2 to (.3}, and
the principal components analysis explained 38%
of the variation. Results are shown in Figures 5
and 6 respectively.
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Figure 5, Multi-dimensional scaling results,
using monthly, seasonal and annual climate data.
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Figure 6. Principal components analysis, using
monthly, seasonal and annual climate data.

We had expected that these two multivariate
techniques would produce somewhat similar
patterns. In Figure 5 the current year (2001} is in
one corner, very close to 1996 {which had a crop
deviance of -5%). However, in Figure 6 it {s ‘mid-
cluster’, with 1997 (+3%) closest, but surrounded
by 1992 (+1%6), 1996 {-3%), 1995 (-0%), and 1988
and 1998 (both —13%).

Faced with this uncertainty, we then conducted a
discriminant analysis, where the percent deviance
of each historical year (as graphed in Figure 3) was
classified as positive, negative, or average {near
zero). Results are graphed in Figure 7. Here, 2001
plots very close to 1992 (+1%), and it is clearly
closer to the group centroid of the ‘average’ years,
than either ‘positive’ or ‘negative’,
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Figure 7, Discriminant analysis of historical years
{classified as positive, negative or average).

5. DISCUSSION

In predicting the annual 2001 macadamia crop, we
have an underlying trend which gives an overal]
expectation of about 36,000 tonnes. About this,
different fine-tuning climate models produced
widely differing deviations, in both positive and
negative directions. Multivariate analyses of
climatic patterns produced litile consistency, and
overall indicated that a near-zero deviation is
probably more fikely,

The median predicted deviation {from the 33 fitted
statistical models of Table 1) was +5.1%, with the
erpiricai 90% interval ranging between ~11.4 and
+16.1%. These convert to a median predicted crop
of 37,600 tonnes (with the quite wide 90% range
being 31,900 to 41,800 tonnes). This compares with
a prediction of 33,400 tonnes by the growers.
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Tabje 1. Statistical models and predictions for the 2001 crop deviation.

el

Mode!  Model  Terms R” % dev.
basis (%) {pred.)
SOI i SOI phase (Jul), SOI phase (prev. June) 88.3 -14.53
2a  SOIph{Jul), SOlph(prev. Jun}, SOIph{prev. Nov) 05.2 -11.37
2b  SOIph{Jul), SOiph{prev. Jun), SOlph(prev. Nov). SOlph(prev. Oct) 98.3 -10.57
Biennial- la  LaglDiff%, Tavd, Tavs-il 63.2 5.13
ity 1b  LaglDiff%, Tav4, Tav8-11, Wstress2 83.0 5.99
lc  LagiDiff%, Tav4, Tav8-11, WstressZ, InRainl0 94.4 5.42
1d  LagiDiff%, Tav4, TavB8-11, WstressZ, InRainl9, Tminl §6.0 6.23
2a  LagiDiff%, Tav3pr, Wlog8 59.4 5.54
26 LagiDiff%, TavSpr, Wlog8, mRainAnn 82.4 -0.68
2c  LaglDiff%, TavSpr, Wlog$, InRainAnn, Evapi? 928 -1.80
2d  LaglDiff%, TavSpr, Wlog8, InRainAnn, Evapi2, InRain3 57.7 -2.84
Climate ia  InRainli, InRain2&3, Tavl 83.3 13.43
ib  1mRainli, InRain2&3, Tavl, TminSpr 92.1 13,18
ic  InRainil, InRain?&3, Tavl, Tmin8-11, Radnll G5.9 17.14
1d  IpRainii, InRain?&3, Tavl, TminB-11, Radnll, Radné 83.6 16.13
2a  Tav4, TminlZ, Evapd 80.6 3.60
2b Tav4, Tminl2, Evap8, Radn9 90.2 -5.06
2¢  Tav4, Tminl2, Evapg, Radn9, InRainl?2 97.2 1.45
2d  Tavd, Tminl1Z, Bvap8, Radn9, laRainlZ, Evapll 98.9 (.82
3a  Tav4, Radnli, Tmin8&9 77.7 17.43
3b Tav4, Radnil, Tmin8&9, Wstressil 84.9 9.65
3¢ Tav4, Radnll, Tmin8&%, Watressil, [nRain2 91.3 9.4%9
3d  Tav4, Radnll, Tmin8&9, Wstress12, InRain2, Wstress! 94,9 8.43
3e  Tav4, Radnll, TminB&9, Wstress12, InRain2, Wstressl, Evapa 97.1 4.64
All Av. average of (Bienniality 1b, Climate 1b, Climate 1c) - 12.44
Biennial-  3b°  LaglIDiff%,Tav4, Tav8-11, Wstress2 56.7 3.15
ity 4a”  LaglDiff%,Radné& 7, EvapSum,InRain6, Swix5&6 98.4 -5.19
4b° Lag1Diff%,Ra&né&?,EvapSum,inRainﬁ,Swi;{S&é,Radn1,SwixSum 99.8 «12.71
Climate 4%’ InRainll,lnRain2&3, Favi,TminSpr 86.6 5.57
4c¥  inRainll InRain2&3,Tavl,Tmin8-11 Radni!l 89.7 11.36
58" Tav4&3,SwixSpr,TminAnn, Tmin7 95.5 1.35
sb*  Tav4&s,SwixSpr, TminAnn, Tinin7, loRaind Tmin® 99.2 3.06
All Av. average of (Bienniality 3b”, Climate 47, Climate 4¢™) - 6.69

* Models using Dunoon climate data only.

On reflection, we feel that the growers are being
conservative in their forecasts, or perhaps they
have underestimated the magnitude of last year’s
decline. The overall {tree-census) expectation 13
around 36,000 tonnes, and 24 of the 33 statistical
models predict a value larger than this.

For future years, we hope that the different
climate models will perform similarly — certainly
more confidence could be placed on these
predictions if the range was smaller. In particular,
this is likely to occur if the observed year aligns
(climatically) with one of the historical years.
This obviously did not happen in this past year.
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